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A long-time fluctuation correlation function with a power-law form has been observed in recent single-
molecule experiments by the Xie group. By analyzing the dynamics of an elastic network model �ENM� under
white noise, we show that the observed long-time memory kernel can be explained by the discrepancy between
the experimentally measured coordinate �or the coordinate directly coupled to protein function� and the mini-
mum energy path of the system. Consequently, the dynamics of the measured collective coordinate has con-
tributions from degrees of freedoms with a broad distribution of time scales. Our study also implies that the
widely used ENM Hamiltonian should be viewed as a coarse-grained model of a protein over a rugged energy
landscape. Large effective drag coefficients are needed to describe protein dynamics with the ENM’s.
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I. INTRODUCTION

Rate processes are ubiquitous in physics, chemistry, and
biology. The development of reaction rate theories is a clas-
sical topic of theoretical physics and chemistry �1�. A basic
physical picture is given in the seminal paper by Kramers �2�
�see Ref. �1� for earlier and subsequent work�. For a dynami-
cal many-body system, a basic premise behind the construc-
tion of many reaction rate theories is the existence of one
special degree of freedom �DOF� called the reaction coordi-
nate �RC�, whereby the trajectory of the species along this
coordinate results in the chemical reaction. Mathematically it
is normally the minimum-energy path �MEP� �or the intrinsic
reaction coordinate� connecting the reactant and the product
along the mass-weighted multidimensional potential energy
surface �see Fig. 1� �3�. One usually assumes a separation of
time scales between the dynamics along the MEP and along
the remaining DOF orthogonal to the MEP. Consequently,
the system dynamics can be well described by a Langevin-
type or generalized Langevin-type dynamics with-short time
memory kernels �4�,

m
d2x

dt2 = −
dU

dx
− �g�

0

t

d�K�t − ��
dx���

d�
+ f�t� , �1�

where m is the reduced mass, x represents the coordinates of
the MEP, U is the potential along MEP, �g is the drag coef-
ficient, K is the memory kernel which usually take the form
of a Dirac � function �for Langevin dynamics� or a fast de-
caying function of �t−�� �e.g., an exponentially decaying
function in the Grote-Hynes treatment �5��, and f is the fluc-
tuation force. The generalized Langevin equation �1� can be
derived formally using the Mori-Zwanzig projection operator
formalism with temporal-spatial coarse graining �4,6,7�. The
basic idea is that a system can be divided into two subspaces
with the dynamics treated explicitly and implicitly, respec-
tively. The projection formalism involves the construction of

an operator which projects the full dynamics of system onto
a subspace spanned by the explicit DOF. The projection for-
malism does not eliminate the implicit DOF, but preserves
their influence or back reaction on the reduced dynamics
through the appearance of a memory term and a stochastic
forcing term. Under the condition that the dynamics of the
explicit and implicit DOF be slow and fast modes, respec-
tively, and that there exist a clear time-scale separation, the
memory term decays quickly.

Proteins are flexible entities. Numerous experimental and
theoretical studies have found that the structural fluctuations
of proteins are strongly correlated with their function �8–12�.
A widely used technique to study protein fluctuations is to
calculate the potential of mean force �PMF� along the RC.
On obtaining the PMF, one assumes that all the DOF or-
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FIG. 1. Schematic illustration of a potential energy surface and
the minimum-energy path �s�. The shown 2D system can be de-
scribed by either a coordinate system with the MEP and the or-
thogonal coordinate q or an x-y coordinate system. A projection
along the MEP may result in a 1D generalized Langevin equation
with short-time memory kernels. However, if the projection coordi-
nate �e.g., x, set by either experiments or functional relevance� de-
viates from the MEP, a long-tail memory kernel may be expected.
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thogonal to the RC adjust to motion along the RC adiabati-
cally. In other words, there is clear time-scale separation be-
tween dynamics along the RC and along the remaining DOF.
Recent single-molecule measurements by the Xie group have
shown a power-law memory kernel for the fluctuations
within proteins of various systems described by a general-
ized Langevin equation �13,14�. The existence of a long-time
memory effect implies the breakdown of the time-scale sepa-
ration assumption, thus initiating several theoretical investi-
gations to clarify the mechanism behind the power-law de-
cay. Granek and Klafter explain the observation by using a
fracton dynamics model �15�. Debnath and co-workers �16�
and Tang and Marcus �17� show that distance fluctuations of
one-dimensional polymers give the observed power-law de-
cay of the memory kernel. Here, we propose a dynamic ver-
sion of the widely used elastic network model which is
simple and yet captures the essential physics. The experi-
mentally measured coordinate �or the coordinate directly
coupled to the protein function� may not coincide with the
minimum-energy path of the system; e.g., consider the pro-
jection is along x in Fig. 1. Then the above-mentioned time-
scale separation condition is not satisfied and a long-time
memory term will be expected.

II. THEORY AND NUMERICAL RESULTS

In the present work, we adopted the widely used elastic
network model �ENM� to analyze the experiment by Min et
al. �14�. The ENM is a coarse-grained model and gives a
reasonable description of protein fluctuations �18–20�. An
ENM represents a protein by a network of elastically coupled
N nodes �usually the C� atom positions�, q= �q1 , . . . ,qN�,
with the following simple interaction form:

V =
1

2
c�

i�j

h�rcut − rij
e ��rij − rij

e �2, �2�

where the superscript e represents the equilibrium structure,
c is a universal spring constant, h is a Heaviside function, rcut
is a cutoff distance, and rij = �qi−q j� and rij

e = �qi
e−q j

e�.
The above potential form can be approximated by ex-

panding to quadratic terms. By diagonalizing the Hessian,
one can transform to normal-mode coordinates with �q�q
−qe=�Q, where � is composed of the eigenvectors of the
Hessian. To study the dynamics, we include the effects of
solvent and coarse-grained degrees of freedom in the ENM
as dissipation terms, so the equations of motion are given by
a set of overdamped Langevin equations �see also �21–23��

− �i�Qi� − �
dQi�

dt
+ f�t� = 0, �3�

where Qi� and �i� are the ��i−1��3+��th normal-mode co-
ordinate and the corresponding eigenvalue. Here, for conve-
nience of discussion, we use two indices to label the normal
mode, with i=1, . . . ,N and �=1, 2, 3. From Eq. �3�, the
coordinate autocorrelation function is given by

CQ
i��t� � 	Qi��t�Qi��0�
 =

kBT

�i�
exp�−

�i�

�
t� , �4�

with kB the Boltzmann constant and T the temperature. The
Laplace transform is

C̃Q
i��s� =

kBT

�i�

1

s + �i�/�
. �5�

To compare with the experimental results of Min et al. �14�,
one needs to calculate the autocorrelation function of the
distance between two ENM nodes, which is approximately
given by

Cr�t� � 	�rij�t� − rij
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In the above expression, the matrix 
̄ is the reduced 
 after
the elimination of the zero-frequency modes corresponding
to the three translational degrees of freedom of the center of
mass and three rotations. The normal-mode correlation func-
tions CQ

k	�t� are given by Eq. �4�. Equation �6� reveals that
the distance correlation function, which is given by a linear
combination of the single-exponential decaying normal-
mode correlation functions, may show multiexponential de-
cay. If the generalized Langevin equation �1� with a har-
monic potential is used to model the residue-residue distance
fluctuation, the memory kernel in Laplace space is given by
�14�

K̃�s� =
m�2

�g

C̃r�s�

Cr�0� − sC̃r�s�
, �7�

where C̃r�s� is the Laplace transform of the distance correla-
tion function Cr�t�,

C̃r�s� � �
k	

pk	

C̃Q
k	�s�

CQ
k	�0�

. �8�

Equations �6�–�8� are the central results of this work. They
show that a long-time memory kernel for the distance fluc-
tuation can exist even if all the normal modes are described
by the Langevin dynamics with � memory kernels. The rea-
son is that the distance fluctuation coordinate is not along
any of the normal-mode coordinates and has contributions
from a large number of normal modes �see Fig. 3�b� below�.

We apply the above analysis here to the protein complex
formed between fluorescein �FL� and monoclonal antifluo-
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rescein 4-4-20 �anti-FL� �PDB label 1FLR; see Fig. 2�. The
spring constant c in Eq. �2� is determined by fitting to Cr�0�
and the drag coefficient � by fitting the experimental data of
the distance correlation function �14�. In the calculations,
the temperature is assumed as T=298 K and a cutoff
distance rcut=10 Å used in the literature is adopted �19�,
c=1.4 kcal/ �mol/Å2�, comparable to the value
1.0±0.5 kcal/ �mol Å2� used in the ENM literature �19�, �
=1kBT s /Å2. Figure 3�a� compares the calculated distance
correlation function using Eq. �6� and the experimental data
of Min et al. Given the simple form of the ENM, the agree-
ment is remarkable. At large t, there is larger discrepancy
between the theoretical result and the experimental data in
Fig. 3�a�. This discrepancy implies that contributions from
some low-frequency modes are underestimated with the cur-
rent model.1 Models with different cutoff distances also give
reasonable fittings. Figure 3�b� shows the normalized contri-
bution of each normal mode given by Eq. �6�. While several
low-frequency modes make significant contributions, those
from other modes cannot be neglected due to the large num-
ber of degrees of freedom involved. Figure 3�c� shows the
Laplace transform of the memory kernel calculated by Eq.
�7�, which has approximately a power-law form. Figure 3�c�
also shows that distance correlations between the FL and
several other residues have similar behaviors, which was also

observed in the one-dimensional polymer study of Tang and
Marcus �17�. This implies that the lack of time-scale separa-
tion is a general phenomenon in protein dynamics.

III. DISCUSSION

The phenomenon of dynamic disorder, or rate constant
fluctuations, has been widely studied �24–27�. The experi-

1To focus on the essential physics, we adopted the simplest ver-
sion of the ENM. Improvement of the fitting is expected with some
refined but more complex models discussed in the literature.

FIG. 2. �Color� Structure of the FL–anti-FL protein complex. In
ENM, the protein structure 1FLR of anti-FL is modeled by 437
nodes representing the Ca atoms with an extra node representing the
center of the aromatic ring of Trp37 and the fluorecein is modeled
by nodes locating at the centers of the three aromatic rings. The
distance fluctuation between the center of Trp37 ring and the FL
ring formed by C3-C8 is calculated to compare with the
experiment.

FIG. 3. The distance correlation function between Tryp 37 and
the FL. �a� Comparison of the calculated distance correlation func-
tion with Eq. �6� �solid line� and the experimental data by Min et al.
�14� �circles�. �b� The normalized contribution of each normal mode
given by Eq. �6�. �c� Laplace transform of the memory kernel cal-
culated by Eq. �7�. Here the calculated memory kernels from the
distance correlation functions between the FL and residue 37 as
well as residues 1, 100, 200, 300, and 400 are shown.
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mental observations of the Xie group further demonstrate
dynamic disorder at single-molecule levels. The experiments
reveal that caution should be taken on applying rate theories
to complex biological systems. The legitimacy of the under-
lying assumptions of a rate theory should be reexamined.
The reaction coordinate framework discussed in the Intro-
duction can break down in two respects. First, a reaction
coordinate with slow dynamics may not exist if the system
involves broad and continuous time scales. Second, even if a
slow reaction coordinate �the MEP� can be defined, the co-
ordinate relevant to experimental measurements or to protein
functions may not coincide with the MEP, and this discrep-
ancy may result in the breakdown of the time-scale separa-
tion between the tagged coordinate and the remaining DOF.
Consequently, to describe the system dynamics, a long-time
memory term may be necessary or extra DOF need to be
treated explicitly. These observations may have significant
relevance in any study involving the dynamics of biological
macromolecules. Here we want to mention a similar situation
in protein motor studies. Protein motors use chemical and
electrochemical energies to perform mechanical work and
are essential for many biological processes �28–32�. A pro-
tein motor is described by chemical reaction coordinates and
mechanical motion coordinates which are coupled together,
analogous to the electron-transfer coordinate and the protein
fluctuation coordinate in the FL–anti-FL system. There is
usually no time-scale separation between the different de-
grees of freedom. Min et al. related the observed long-time
memory kernel to the observation that there may be no well-
defined single-valued rate constant for an enzymatic reaction
�33,34�. Studies show that theoretical treatments beyond dis-
crete rate equations are necessary to understand some mecha-
nochemical properties of a protein motor �35–37�. For ex-
ample, a distribution of rate constants is essential to explain
the long-standing puzzle of the motor torque-speed relation-
ship of the bacterial flagellar motor �38,39� �comparing Eq.
�6� of Ref. �39� and Eq. �5� of Ref. �33��. Further studies are
needed to examine the implications of the experimental ob-
servations of Min et al. to the understanding of other biologi-
cal systems.

To fit the experimental data, we used a drag coefficient
�=1kBT s /Å2. This value is orders of magnitude higher than
the typical drag coefficient of a polymer �17�. This discrep-
ancy may call into question the validity of the distance fluc-
tuation models as discussed in the present work and in the
work of Tang and co-workers �17,40�. However, the discrep-
ancy can be reconciled by the fact that the elastic network
model is a coarse-grained model. Many experimental and
theoretical studies �especially in the protein folding commu-
nity� show that a system complex such as a protein possesses
a rugged energy �41,42�. The ruggedness of the energy land-
scape may lead to the conclusion that a normal-mode analy-
sis cannot work since it only characterizes the potential near
one local minimum. On the other hand, the smooth potential
used by an elastic network model should be understood as an
effective potential after averaging out the local rugged fluc-
tuations �43,44�. That explains why the elastic network mod-
els are surprisingly successful on describing large-scale pro-
tein fluctuations �notice that the short-range fluctuations of
the potentials have a marginal effect on the equilibrium prop-

erties such as the B factor at experimental resolutions� �19�.
Consequently, the effective drag coefficients used in a dy-
namic version of the elastic network model are different
from the bare drag coefficients and the difference can be
large. To further illustrate this, we refer to the work of Zwan-
zig �45�. Zwanzig proposed a model describing diffusion in a
rugged potential and derived an expression for the effective
diffusion coefficient. His results show that the ruggedness of
the potential can dramatically reduce the diffusion coefficient
at low temperatures. Zwanzig looked at diffusion on a length
scale much larger than the ruggedness and, in effect, replaced
the original rugged potential with an effective smooth poten-
tial, integrating out the rapid small fluctuations. Carrying this
analogy to our case, the effective drag coefficients used for
an elastic network model should be normal-mode frequency
dependent �see Fig. 4�. For high-frequency modes with a
length scale comparable to the characteristic length scale of
the rugged potential, the values should approach the bare
drag coefficients. For low-frequency modes with a length
scale much larger than the characteristic length scale of the
rugged potential, the drag coefficients reach renormalized
values according to the analysis of Zwanzig. A set of normal-
mode frequency-dependent drag coefficients may help fit the
experimental data. Our current treatment with a single value
of the drag coefficient is oversimplified and requires further
study. Another prediction of the present model is that the
effective drag coefficients and the distance autocorrelation
function are expected to be highly temperature dependent.
The experiment setup by the Xie group may serve as a tool
to detect ruggedness of the protein energy landscape �see
also Ref. �46��.

FIG. 4. Schematic illustration of rugged energy landscapes
�solid lines�. Also shown are renormalized smooth potentials with
high �a� and low �b� frequencies �dashed lines�. The units of dis-
tance and energy are arbitrary and only for illustration purposes.
The existence of potential roughness may have different effects on
the effective diffusion along the potential landscapes in the two
cases.
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